Get invited to our slack community and get access to opportunities and data science insights

euclid_similarity


euclid_similarity(ftvec1, ftvec2) – Returns a euclid distance based similarity, which is `1.0 / (1.0 + distance)`, of the given two vectors

WITH docs as (
select 1 as docid, array(‘apple:1.0’, ‘orange:2.0’, ‘banana:1.0’, ‘kuwi:0’) as features
union all
select 2 as docid, array(‘apple:1.0’, ‘orange:0’, ‘banana:2.0’, ‘kuwi:1.0’) as features
union all
select 3 as docid, array(‘apple:2.0’, ‘orange:0’, ‘banana:2.0’, ‘kuwi:1.0’) as features
)
select
l.docid as doc1,
r.docid as doc2,
euclid_similarity(l.features, r.features) as similarity
from
docs l
CROSS JOIN docs r
where
l.docid != r.docid
order by
doc1 asc,
similarity desc;

doc1 doc2 similarity
1 2 0.28989795
1 3 0.2742919
2 3 0.5
2 1 0.28989795
3 2 0.5
3 1 0.2742919

Platforms: WhereOS, Spark, Hive
Class: hivemall.knn.similarity.EuclidSimilarity

More functions can be added to WhereOS via Python or R bindings or as Java & Scala UDF (user-defined function), UDAF (user-defined aggregation function) and UDTF (user-defined table generating function) extensions. Custom libraries can be added on via Settings-page or installed from WhereOS Store.

Related Post

Leave a Comment